Comp202 – Principles of Object Oriented Programming II
EXAM #2

Rice University - Instructors: Wong & Nguyen

NAME & ID#: _________________

Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

3. In all of the questions, feel free to write additional helper methods to get the job done.

4. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

5. You are free to use any code that was given to you in the lectures and labs.

6. You have 5 hours to complete the exam once you have begun.

Please write and sign the Rice Honor Pledge here:

	1.a
	1.b
	1.c
	2.a
	2.b
	3.a
	3.b
	3.c
	3.d
	3.e
	Total

	/10 pts
	/10pts
	/10 pts
	/15 pts
	/10 pts
	/15 pts
	/15 pts
	/5 pts
	/10 pts
	/5 pts
	/100 pts

1. (30pts total) 2-3-4 Tree and Red-Black Tree:
Consider the TreeN framework as discussed in lectures #19-22. For a TreeN , each node can contain an arbitrary number of data elements. A TreeN node containing k data elements has k+1 subtrees. We mainly use TreeN as a balanced sorted tree structure. The key structural methods for TreeN are splitUpAt, splitDownAt, and spliceAt. You may want to review the PowerPoint presentation given in lecture #19 to see how these operations work. The published paper (given in lecture #19) also provides detailed descriptions of these behaviors.

A sorted TreeN of order 1 is nothing but a binary search tree.

A 2-3-4 tree is a sorted TreeN of order 3, i.e. each node can contain a maximum of 3 sorted data elements.

A red-black tree is a sorted TreeN of order 1 (i.e. a binary search tree) with the following properties:

· Every node is colored as red or black

· The root is always black.

· If a node is red then its children must all be black.

· Every path from a node to the empty node (at the bottom of the tree) must contain the same number of black nodes.

A 2-3-4 tree can be transformed into a red-black tree by the following process:

· for a 2-node, a node with 1 data and 2 subtrees, turn it into a black node.

	
	

· for a 3-node, a node with 2 data elements (left and right) and 3 subtrees,

· split up at the left element, turning the left element into a black 2-node whose right subtree is a red node containing the right element,

	
	

or

· split up at the right element, turning the right element into a black 2-node whose left subtree is a red node containing the left element.

	
	

· for a 4-node, a node with 3 data elements and 4 subtrees, split up at the middle element and turn it into a black node, the left and right elements become the left and right red subtrees, respectively.

	
	

Conversely, a red-black tree can be transformed into an equivalent 2-3-4 tree by collapsing each red node into its black node parent and removing the color of each of the nodes.

Run the supplied demo program (rbdemo.jar in the red_black subdirectory) for an illustration of the equivalence between 2-3-4 trees and red-black trees:

· Keep the order at 3 (i.e., do not change the order). Alternate between the Red-Black tree button and the 2-3-4 Tree button as follows.

· Enter a random number, then click the Red-Black Tree button, then click the 2-3-4 Tree button.

· Enter 2 random numbers, then click the Red-Black Tree button, then click the 2-3-4 Tree button.

· Enter 3 random numbers, then click the Red-Black Tree button, then click the 2-3-4 Tree button.

· Enter a few random numbers, then click the Red-Black Tree button, then click the 2-3-4 Tree button.

Your task in this problem is to write TreeN visitors to carry out the equivalent transformations between 2-3-4 trees and red-black trees as described in the above. To decorate a raw data Object as black or red, we use a union of classes, ARBObject, Red and Black, with the corresponding visitor interface, IRBVisitor.

The HTML documentation for the TreeN and ARBObjects can be found in the supplied red_black\docTreeN and red_black\docRB directories respectively.

(10 pts) Question A: Write the ITreeNAlgo called From234ToRedBlack to transform a 2-3-4 tree to a red-black tree as specified in the stub code given below.

/**

 * Converts a 2-3-4 tree to a Red-Black tree.

 */

public class From234ToRedBlack implements ITreeNAlgo {

 public static final From234ToRedBlack Singleton = new From234ToRedBlack();

 private From234ToRedBlack() {

 }

 /**

 * Perform recursively the following operation from the bottom of the tree

 * up towards the root:

 * Splits a 3 children node into a 2 children node (like a binary tree)

 * whose root contains a Black decorated object, and whose left subtree

 * has a root that contains a Red decorated object.

 *

 * Splits a 4 children node into a 2 children node (like a binary tree)

 * whose root contains a Black decorated object, and whose left and right

 * subtrees with Red decorated object roots.

 *

 */
 public Object caseAt(int i, TreeN host, Object... nu) {

 switch(i) {

 case 0: {

 return host;

 }

 case 1: {

 // This is the case with 1 data and 2 children subtrees.

 // Decorate the root data as Black and recurse down the left

 // and right subtrees.

 // STUDENT TO COMPLETE

 return host;

 }

 case 2: {

 // This is the case with 2 data and 3 children subtrees.

 // Recurse down the subtrees and split up the root node

 // as specified.

 // STUDENT TO COMPLETE

 return host;

 }

 case 3: {

 // This is the case with 3 data and 4 children subtrees.

 // Recurse down the subtrees and split up the root node

 // as specified.

 // STUDENT TO COMPLETE

 return host;

 }

 default: {

 return host;

 }

 }

 }

}

All of the following code is found in the RBto234.java file.

You are given the following complete code for class CollapseRed, which serves as a utility visitor in the process of transforming a red-black tree to a 2-3-4 tree. Note that CollapseRed is a visitor for a RBObject and not a TreeN visitor.

/**

 * Serves as a utility visitor in the process of transforming a red-black tree

 * to a standard (unmarked) 2-3-4 tree.

 * The RBObject host is the root data of the given child TreeN of a given

 * red-black TreeN.

 * Only when this host is Red that the child tree spliced to its given parent

 * TreeN at a given index in order to transform the parent red-black tree

 * to a 2-3-4 tree whose root should contain only the (unmarked) raw data.

 */
class CollapseRed implements IRBVisitor {

 public static final CollapseRed Singleton = new CollapseRed();

 private CollapseRed() {

 }

 /**

 * Splices the given child tree to the given parent tree at the given

 * index and remove the red marker from the host.

 * @param r the root data of the child TreeN inp[1].

 * @param inp inp[0] is the index to be spliced at,

 * in[1] is the child TreeN to be spliced into inp[2],

 * inp[2] is the parent red-black TreeN.

 * @return TreeN inp[2].

 */
 public Object redCase(Red r, Object... inp) {

 TreeN child = (TreeN)inp[1];

 child.setDat(0, r.getObject());

 return ((TreeN)inp[2]).spliceAt((Integer)inp[0], child);

 }

 /**

 * Removes the black marker from the host.

 * @param r the root data of the child TreeN inp[1].

 * @param inp inp[0] is the index to be spliced at,

 * in[1] is the child TreeN to be spliced into inp[2],

 * inp[2] is the parent red-black TreeN.

 * @return TreeN inp[2].

 */

 public Object blackCase(Black b, Object... inp) {

 TreeN child = (TreeN)inp[1];

 child.setDat(0, b.getObject());

 return inp[2];

 }

}

You are to write the code to transform a red-black tree into an equivalent 2-3-4 tree in two steps as prescribed by the following.

(10 pts) Question B: Write the TreeN visitor called CollapseAll that traverses the host TreeN from top to bottom and collapses all the red nodes with their parent black nodes, as specified in the stub code below. Hint: use the above CollapseRed.

Note:

· The host TreeN is assumed to be a subtree of a red-black tree and thus contains red/black nodes.

· CollapseAll changes the order of the host TreeN to 3 and removes all red/black coloring, mutating the host back to a 2-3-4 tree.

/**

 * Serves as a helper visitor in the process of transforming a red-black tree

 * to a standard (unmarked) 2-3-4 tree.

 * Tries to collapse the host tree to its parent tree at a given index.

 * Only trees whose root nodes are red are to be collapsed with their parents.

 *

 * FOR STUDENT TO COMPLETE

 */
class CollapseAll implements ITreeNAlgo {

 public static final CollapseAll Singleton = new CollapseAll();

 private CollapseAll() {

 }

 /**

 * Only collapses the red host tree to the given parent tree at the given

 * index, and recursively traverses down the right and left subtrees to perform

 * the same operation.

 * @param inp inp[0] the index for where to splice to the parent,

 * inp[1] the parent tree.

 * @return this.

 */
 public Object caseAt(int i, TreeN host, Object... inp) {

 switch (i) {

 case 0: {

 return host;

 }

 case 1: {

 // Hint: since the host can mutate, hold on to its left and right

 // subtree before trying to collapse the host to its parent.

 // STUDENT TO COMPLETE

 return host;

 }

 default: {

 return host;

 }

 }

 }

}

(10 pts) Question C: Write the TreeN visitor called RBto234 that mutates a red-black tree (i.e. a sorted TreeN of order 1) to an equivalent 2-3-4 tree, as specified by the stub code given below. Hint: use the above CollapseAll.

/**

 * Converts a Red-Black tree to a 2-3-4 tree.

 * The host is assumed to be a red-black tree whose data nodes contain RBObject.

 * The root node is a black node.

 *

 * FOR STUDENT TO COMPLETE

 */
public class RBto234 implements ITreeNAlgo {

 public static final RBto234 Singleton = new RBto234();

 private RBto234() {

 }

 /**

 * Converts this red-black to a corresponding 2-3-4 tree by collapsing the trees

 * with red nodes with their (black) parents.

 *

 * FOR STUDENT TO COMPLETE

 */

 public Object caseAt(int i, TreeN host, Object... nu) {

 switch(i) {

 case 0: {

 return host;

 }

 case 1: {

 // Hint: since the host can mutate, unwrap the root data and hold on

 // to the left and right subtrees before trying to collapse them to the host.

 // STUDENT TO COMPLETE

 return host;

 }

 default: {

 return host;

 }

 }

 }

}

Copy your code from the above 3 sections into the space below:

2. (25 pts total) Tree Fractals:
In this problem we will be exploring a new type of fractal: Tree Fractals.

A tree fractal starts as a single “line”. If we “grow” the line, it transformed into a “branch”, which is the original line, plus (in this case, 3) lines "sprouting" from its endpoint. These new lines are sized and are pointing relative to the original line. We see that clearly if we grow the tree fractal again:

[image: image1.png]

[image: image2.png]

[image: image3.png]

The process simulates the way a plant grows. After 8 iterations, we see a distinctly organic shape forming:

[image: image4.png]

Changing the way a line grows into a branch changes the way the tree fractal looks:

[image: image5.png]

Tree fractals, differentiated by their branching properties, can be used to describe the growth differences between broccoli and cauliflower and between various species of trees such as an elm vs. an oak.

Your task is to design an object model of a tree fractal. Your design should comply with the following requirements:

· There should be a top-level class should be called TreeFractal and should represent a tree fractal of any complexity or growth level.

· TreeFractal should be able to perform at least to two following behaviors:

· Paint the fractal onto a supplied Graphics object and

· Grow the fractal by mutation.

· Your model and comments should be complete enough to fully describe how the above behaviors are implemented. Giving examples of usage is generally very helpful in clarify your points.

· You should include discussions of what design patterns you used and why.

· The growth characteristics of the tree fractal should be dynamically changeable.

· All methods signatures need to be complete but the method bodies need only contain comments as to what they would be expected to do.

· Your comments should be complete and detailed enough to accurately describe what is going on in that method.

· You do not, however, need to go to the detailed level of describing things such as affine transformations or traversals of prototype lists. Saying something such as “creates new fractal object based on prototype and supplied coordinates” is sufficient.

Grading criteria:

· (15 pts) Part A: Design – criteria include

· Correctness – will the design be able to properly model a tree fractal?

· Flexibility – is the design able to model many different types of tree fractals?

· Extensibility – is the design capable of easily being extended to do more things?

· Robustness – is the design able to withstand incorrect usages such as improper input parameters or coding mistakes in its variant components?

· (10 pts) Part B: comments and descriptions
· Do the comments fully describe the system?

· Are the various properties and behaviors of the objects correctly and completely described?

· Is your discussion of the design patterns used clear and complete?

Think SIMPLE!!! The solution may be a lot easier than you initially realize.

Placed your code and discussions in the treeFrac directory. An empty DrJava project file and Word document has been supplied.

Copy your code and comments into the space below:

3. (45 points total) Parsing

You are to write a recursive descent parser to parse the following LL(1) grammar.

S ::= X Y
X ::= A | c
A ::= a X
Y ::= B | X
B ::= b Y

In the above a, b, c are tokens. Though the above LL(1) grammar is completely different from the one given in lab #10, the design and implementation of the tokens and their corresponding visitors remain the same! For reference, the code for the tokens, their visitors and their tokenizer have been provided.

Part A: (15 pts) Design an appropriate object model for the above LL(1) grammar by writing the code for the appropriate classes with all the methods and fields. Put your classes in the “rules” package.

Part B: (15 pts) Design the corresponding object model for the factories of token visitors that will parse the grammar by writing the stub code for the appropriate classes with all the methods and fields; the methods need not have working code. Put your code in the “parser” package.

Part C: . (5 pts) Write the code for the factory that parses S.

Part D:. (5 pts) Write the code for the factory that parses X.

Part E:. (5 pts) Write the code for the factory that parses A.

Copy your code for the above 5 sections into the space below:

10

A

B

A

B

10 (b)

10

20

A

B

C

A

B

C

10 (b)

20 (r)

10

20

A

B

C

A

B

C

10 (r)

20(b)

A

10

20

A

B

D

30

C

D

C

30 (r)

B

20(b)

10 (r)

Nov. 9, 2005
8 of 9

