

RICE UNIVERSITY SCHOLARS PROGRAM
COVER SHEET FOR PROPOSAL

PROJECT TITLE
Geometry Synthesis

NAME Mathias Ricken

DATE 10/07/03

RICE ID 0812203 MAILING ADDRESS
E-MAIL mgricken@rice.edu 6360 Main St.
PHONE (713) 348-1940 Houston, TX, 77005
ADVISOR Dr. Joe Warren
 DEPT. Computer Science
 PHONE (713) 348-5728 TOTAL FUNDS REQUESTED:
 E-MAIL jwarren@rice.edu $1675

ABSTRACT OF PROPOSED STUDY

The creation of meaningful geometry for architecture or simulations currently takes a

considerable amount of time. Traditional geometry creation usually entails the creation of

a rough layout of the architecture, the manual addition of geometric detail, and a final

application of colors and textures to it.

By automating large portions of this using the parametric generation of large-scale

geometry and the subsequent addition of detail using techniques borrowed from texture

synthesis, this process might be accelerated dramatically.

I propose to study algorithms that allow for such automatic geometry synthesis and to

create an editing environment that enables the user to automatically generate architecture

governed by a set of parameters. In a second phase, the environment will then be used to

synthesize meaningful detail into the still raw architecture.

The system will display the results 3-dimensionally and let the user export them into

other programs.

mailto:mgricken@rice.edu
mailto:jwarren@rice.edu

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. PREVIOUS WORK.. 2

 Planetary-Scale Geometry Synthesis ... 2

 Maze Generation.. 4

 Texture Synthesis... 5

3. PROPOSED WORK... 9

 Budget.. 12

 Timeline... 13

4. FUTURE WORK.. 14

5. AUTHOR’S QUALIFICATION .. 15

 Author’s Resume ... 15

6. CONCLUSION... 16

7. REFERENCES ... 17

 1

INTRODUCTION

The use of computer-generated, 3-dimensional geometry today is ubiquitous. It

has been used for over a decade in computer-aided design (CAD) of commercial products

or yet unbuilt architecture, is a major component of current computer games, and has

been embraced by the movie industry to cheaply replace reality or to build an alternate

one. Education and training also make increasing use of 3-dimensional graphics.

The creation of meaningful geometry for these architectures or simulations,

however, currently takes a considerable amount of time. Traditional geometry creation

usually entails the making of a rough layout of the architecture, the manual addition of

geometric detail, and a final application of colors and textures to it. In the computer game

industry, for example, it requires roughly the work of an entire man-year to create the

content for only 40 hours of game play [1].

Intelligent algorithms could reduce this figure significantly and open up new

opportunities. By automating large portions of the traditional procedure described above,

the designers would have more time to tailor the simulation to their specific needs, for

example. In computer gaming and training, fast automatic generation of new

environments would also increase replay value and the effectiveness of the simulation.

Aside from the immediate practical benefits, the successful completion of this

study would also tie together two research areas that are currently disjoint: that of

textures and that of geometry. It would prove that synthesis techniques developed with

textures in mind can be applied to geometry as well. Using this connection to leverage

texture synthesis techniques would be immensely useful and increase the value of both

previous and future work these areas.

 2

PREVIOUS WORK

 Previous work that falls precisely into this area of study, the generation of

meaningful geometry on an architectural level, is very limited. Most work has been done

in fields that operate on a different scale, are severely limited, or are not inherently

related to geometry, but serve as source of techniques that can be applied to geometry

synthesis. This section will examine work in all three categories.

Planetary-Scale Geometry Synthesis

Most work regarding geometry generation has been done on a landscape basis,

and several software products are available already [2][3]. The algorithms at the cores of

these programs mostly utilize a noise source, such as Perlin noise [4], to generate a

matrix called height field. Small numbers in this field correspond to low altitudes, and

large numbers to high altitudes. The user can then change the terrain by applying filters

that smoothen, roughen, or erode the ground, changing the sea level, or adding rivers and

lakes. Using these tools, mountain ranges, lakes, entire continents and planets can be

generated and photo-realistically rendered, as demonstrated by Terragen in Figure 1.

Some systems even include a simulation of a plant ecosystem [5]. The distribution of the

different plant species is determined by cellular automata, as found in the game of life [6],

Figure 1: Terragen Landscape Figure 2: Plant Ecosystem

 3

for example. Certain plant species can only survive in well-irrigated areas, while others

are more resistant to draughts. Plant seeds of one kind may spread more easily than those

of another. All these parameters determine the survival and breeding patterns and

ultimately the placement of plants. Again, the results are excellent, require very little

human interaction, and nearly photo-realistic (see Figure 2).

 It is obvious, though, that these methods of generating geometry function on a

completely different scale than the ones I am proposing. These algorithms create entire

continents and planets; they simulate the constructive forces of nature, not those of man.

Even though human settlements could possibly be simulated using an ecosystem similar

to the one used for plants, this would again happen on a planetary scale. It cannot be

applied to only a single building. Architecture, that is construction with a coherent form

as a result of a conscious act, seems inherently different from the way nature is shaping a

planet; it therefore cannot be simulated using the same means.

 It should be possible, though, to combine the two approaches and use noise- and

filter-based geometry synthesis on a large scale to create a natural environment. The

graph- and analogy-based algorithms I propose then fill this habitat with structures. This,

however, is a subject that will require further investigation.

 4

Maze Generation

There are some algorithms for creating smaller structures [7]. One of them,

recursive backtracking, involves randomly removing walls from a grid and moving into

that direction if that cell has not been previously reached. Once a dead end is

encountered, that is a cell where no wall can be torn down since all of the surrounding

cells have already been stepped into, the algorithm backtracks to the closest cell where a

wall can be removed. Applying this procedure until the entire grid has been processed

results in a Mephistophelean maze, depicted in Figure 3. Since every place in the maze

can be reached in one and only one way, these kinds of mazes are also called perfect

mazes.

While Mephistophelean mazes have nice properties, most of the time they do not reflect

human architecture. They are too repetitive, restrictive, and use space in an awkward

way. Additional shortcomings are that they can only be created on some kind of regular

grid, and that they are mostly 2-dimensional in nature.

The DungeonMaker program employs a different stragety [8]. The user specifies

starting locations for agents called tunnelers, which excavate corridors and change

Figure 3: Mephistophelean Maze Figure 4: DungeonMaker Maze

 5

direction according to a probability table. At random places, tunnelers can spawn new

agents that branch off in different directions, or create rooms that are sectioned off from

the corridor by doors. Before generation, the user can also manually place corridors,

walls, and doors.

 If care is taken, the resulting maze still exhibits connectedness, but allows loops,

wider tunnels, and generally more interesting shapes. Mazes generated by an algorithm

like the one described above look more realistic. They contain corridors, halls, and rooms

that might serve some purpose, as shown in Figure 4.

 Currently, the algorithm still operates on a 2-dimensional grid, sharing some of

the disadvantages of Mephistophelean mazes. I am certain, though, that the procedure can

be modified to make free use of space in 3-dimensions.

 Texture Synthesis

 Much more research has been done in an area not directly related to geometry

synthesis. In texture synthesis, new textures or images are formed from one or more

samples given to the algorithm. The image should then be similar to but not exactly the

same as the originals.

 Li-Yi Wei described an algorithm that is often used in texture synthesis in his

doctoral thesis [9]. It requires a source texture and a template texture as inputs and

generates a synthesized texture of arbitrary size that resembles the source texture (see

Figure 5). In most cases of regular texture synthesis, the template texture just contains

random noise, even though other possibilities exist, as I will explain later.

 The procedure cycles through every pixel of the template texture and looks at its

neighborhood, the set of pixels that surrounds it. It then compares the neighborhood in

the template texture to all possible neighborhoods in the source, and selects the one that is

 6

the least different. Usually, an L2 norm is used, which compares the sum of the squares of

the differences; since the differences are squared, large aberrations are punished more

harshly than small ones, resulting in closer matches. Once the closest neighborhood in the

source texture has been found, the pixel in the center of that neighborhood is copied into

the current pixel in the template, and the algorithm continues with the next pixel.

 Neighborhoods can vary in size and shape. Larger neighborhoods are able to

reproduce larger features in the source texture. The neighborhood size should be

proportional to the size of the features in the source, and the proportionality constant is

called the randomness parameter. Small values lead to textures that hardly resemble the

source, while values close to 1 or larger recreate the source almost perfectly.

 If the template contains random noise, the neighborhood also needs to be causal,

that means it should only take those areas of the texture into consideration that have

already been synthesized. Since the areas above and to the left of the current pixel have

already been processed, a causal neighborhood generally has the shape of an “L” rotated

90 degrees clockwise. The requirement for causality therefore determines the shape of the

neighborhood.

 The template, however, does not have to contain noise. It might start off with

meaningful information or be composed of both that and noise. In this case, the algorithm

will attempt a constrained texture synthesis. It is constrained since the synthesized pixels

Figure 5: Texture Synthesis (left: source texture; middle: noise; right: synthesized texture)

 7

must perfectly blend in with the ones already present, some of which can be to the right

or below the current pixel. Therefore, a symmetric neighborhood is necessary. If the

image contains noise, a two-pass algorithm maintains causality: The first pass uses an L-

shaped neighborhood; a second pass with a symmetric neighborhood satisfies the

boundary requirements. Constrained synthesis can be used to restore missing pieces in a

texture, to erase certain areas, or to expand it and make it larger.

 As stated above, larger neighborhoods are necessary for the reproduction of large

features. Unfortunately, running time increases dramatically with the size of the

neighborhood. The algorithm depends on the size of the template texture t; the size of the

source texture s; and the size of the neighborhood n. Since it compares every

neighborhood in the template with every possible neighborhood in the source, and every

pixel in a neighborhood with its corresponding pixel in the source neighborhood, a naïve

implementation is O(t2s2n2): Doubling the size of the neighborhood quadruples the

running time.

 Several optimizations have been proposed to reduce running time. In his thesis,

Wei already proposed a multi-resolution algorithm that uses a pyramid scheme to recreate

large features while using smaller neighborhoods. Both the source and the template

texture are scaled down, and synthesis begins at a much lower resolution. Since the size

of the largest feature is also decreased, a smaller neighborhood is now able to capture it.

The results of the low-resolution synthesis are then scaled up again, and the algorithm

continues at the higher resolution with the rescaled results as template.

Together with Marc Levoy, Wei also described how to accelerate texture

synthesis by using tree-structured vector quantization (TSVQ), a common technique for

data compression [10]. Instead of doing a linear search through all possible

neighborhoods, a tree of neighborhoods is constructed before synthesis begins. Search

time can therefore be reduced from O(n) to O(log n), where n is the number of

neighborhoods that are compared.

 8

Lin Liang et al noted that most of the time, large contiguous patches are

transferred from the source texture into the template [11]. Best-match comparisons only

need to be made at a patch’s border where it blends into other patches. In patch-bases

texture synthesis, the source is broken down into patches that are pasted into the template

in their entirety. When a new patch is selected, only the borders are compared. This

dramatically decreases the running time.

While texture synthesis does not directly relate to the task at hand, it is possible to

change the representation of closed polygonal geometry so that the techniques described

above can be used. The space the geometry is in is divided into a uniform grid and the

distance to the closest polygon is calculated; the distance is positive or negative

depending on whether the cell is inside or outside the geometry. The result is a matrix of

numbers, not very different from the one used to represent a texture. The synthesized

matrix can then be transformed back to polygonal geometry using Marching Cubes [12]

or Dual Contouring [13].

During the summer of 2002, I have already demonstrated that texture synthesis

techniques can be used to generate new geometry. Figure 6 shows hand-created geometry

on the left and the result of geometry synthesis on the right.

 Unfortunately, my studies showed that the algorithms are bad at creating large-

scale structures. This was somewhat expected, though, since texture synthesis techniques

require the image to be stationary and local, as explained in Wei’s thesis; their

application to large-scale geometry thus fails for the same reasons it fails in producing

pictures as opposed to just textures. Attempts to use synthesis by analogy to modify

surface properties yielded some encouraging results, though, as Figure 7 depicts. I would

like to further pursue this direction.

 9

PROPOSED WORK

 I propose to build an editing system to synthesize 3-dimensional architectural

geometry. The system will consist of two editing stages and allow user interaction or

automatic generation at any time. The program will have a graphical user interface (GUI)

and show the results of the synthesis in a 3-dimensional display.

 The first stage will construct large-scale architecture using a parametric algorithm

similar to the one DungeonMaker uses. I will have to generalize it to work with 3-

dimensional, not grid-based spaces. This process also involves defining precise

Figure 6: Geometry synthesis by analogy (left: source; right: synthesized)

Figure 7: Surface properties modified by synthesis (left: source; right: synthesized)

 10

parameters to control the generation of geometry, such as the frequency that a path

branches, the possible angles for those branches, the thickness of the walls, alignment

options to create grid-like layouts and floors, the sizes of corridors and rooms and their

shapes. I expect good results from this algorithm, even though I believe it will be hard to

find the parameters that will lead to architecture as we know it today. The synthesized

geometry should still be interesting, diverse, and suitable for use in a computer game, for

example. Creating architecture that actually resembles today’s buildings will need further

investigation, as architecture is always connected to a purpose, which is beyond the

understanding of the program.

 Should the proposed algorithm unexpectedly not perform well in our modified

environment, I will implement an alternative algorithm that has two stages itself. The first

stage places points according to some of the parameters mentioned above. Depending on

how close the points are, some of them will then be connected to form a graph. In the

second phase, the algorithm then picks suitable geometric objects to transform the points

into rooms and the connections into corridors. My provisional investigations suggest that

this procedure will work as well; however, the algorithm described above has been

proven to yield good results on a 2-dimensional grid and therefore seems more

promising. I also I will be able to implement it more quickly than the untested algorithm,

giving me more time to focus on geometry synthesis by analogy.

 Once the raw geometry has been created, algorithms borrowed from texture

synthesis will be used to automatically add detail to the architecture. The user will be able

to select an area of the geometry and different detail sources, and the program will apply

those details to it. The changes made can be both geometric and textural in nature: They

might change the geometry to match that given in the sources or automatically add

seamlessly tiling textures to it.

 11

 Geometric changes to the architecture might, for example, involve adding a brick

pattern with actual seams to a wall; installing windows in an outside wall that match the

height and style of the wall; adding steps and a railing to convert a ramp to a staircase;

and possibly augmenting a room by including furniture, plants and other objects. Figure 8

provides an illustration of how the algorithm might add windows to a wall. The textural

modifications will be more traditional and follow the classic ideas of texture synthesis to

automatically paint the geometry in a coherent fashion.

 To implement geometry synthesis by analogy, I will have to generalize the

synthesis algorithms I have worked with in 2002 to work with 3-dimensional geometry.

Transitioning from 2-dimensions to 3-dimensions will degrade runtimes even further and

demand that I implement some of the optimizations that the works in texture synthesis

describe. I expect particularly good results from using patch-based synthesis. Since I have

not worked with these particular optimizations, I cannot make any statements about the

time the editing system will require to synthesize a level; my intuition, however, tells me

it to be in the range of several hours. The time to generate the raw geometry will be much

shorter and the program will need no user interaction while it is synthesizing, so using

this system will still be beneficial to designers.

 There is no alternative plan if geometry synthesis by analogy fails to provide good

results. While I will still be able to demonstrate the generation of raw geometry and the

automatic texturing of the architecture without it, my main interest is to prove that

algorithms for texture synthesis can be used on geometry as well. Due to the successful

Figure 8: Geometry Synthesis by Analogy (left: raw geometry; middle: source; right: synthesized)

 12

demonstration of geometry synthesis in two dimensions on a small scale and the

promising results in changing surface properties, though, I am certain the algorithms can

be successfully leveraged.

 Several approaches exist to improving the synthesis result, though. In my

previous studies, I noticed that the application of several passes over the same area

generally produces results that match the source geometry better. This can be measured

by analyzing the energy of the result, the sum of the differences between the

environments in the template and the best matches found in the sources. A good synthesis

result will have a low energy and thus conform more closely to the source geometry. The

algorithm could be modified to run several passes in areas where the energy remains

above some threshold value.

 Another possibility is to encourage the selection of pixels from adjacent

neighborhoods. If the last pixel was generated from one source neighborhood, the

neighborhoods surrounding it could be given a higher probability of being picked. This

technique leads to larger patches selected from the same source region and therefore to

synthesized geometry that is more contiguous.

 The final results of the synthesis process can either be viewed in the editing

system or exported into other programs. This will make it possible to use the geometry in

other programs and possibly make further modifications.

Budget

For the completion of this project, I request funds for the items below. I would

also demonstrate my results at the SIGGRAPH 2004 conference held from August 8-12,

2004 in Los Angeles and thus request funding for travel and registration expenses.

Unfortunately, my work will not have progressed far enough to allow me to

submit a paper; however, submission of a poster and participation in the ACM Student

 13

Research Competition is possible. Being able to showcase my research at SIGGRAPH

and to explain its implications personally would be of great value. Registration in

advance is possible.

Software
 IntelliJ IDEA Editing Environment for Java, Academic

Version
$100

Sources
 Copying and printing; access fees to papers; books (to be

donated to Fondren Library)
$150

SIGGRAPH
 Conference registration $425
 Travel $700
 Lodging (4 nights) $300
Total $1675

Timeline

The anticipated timeline for this project is as follows:

December 2003

 Large-scale geometry generation

February 2004

 Proof of concept for geometry synthesis by analogies

April 2004

 Optimizations for geometry synthesis and thesis

May 2004

 Submission of poster to SIGGRAPH 2004

August 2004

 Presentation of work at SIGGRAPH 2004

 14

FUTURE WORK

 This project leaves many directions open for further investigation. If the

parametric creation of large-scale geometry is to generate architecture as we see it every

day, the algorithms and parameters used here will certainly need additional research. A

cooperation with researchers from the fields of architecture and sociology might prove to

be fruitful here.

 Another option is to improve the algorithms used in the synthesis by analogy part.

As mentioned before, optimizations are even more critical in 3-dimensional space than

they are in the two dimensions texture synthesis operates in. It should therefore be useful

to study all the optimizations that have been found to work for texture synthesis and to

apply them to geometry.

It is also possible that geometry makes it possible to employ special optimizations

unsuitable for textures. The search for those would certainly be worthwhile. One area that

could provide insight is that dealing with compression of geometric data. To reduce the

amount of information, geometry is often represented as an octree, a data structure that

divides space into eight quadrants. If one of those quadrants is completely filled with the

same material, it does not have to be broken down to the finest resolution but can instead

be represented as a larger block. Using an octree representation for geometry synthesis

might reduce the number of comparisons necessary to find the best-matching

neighborhood and thus result in improved runtimes.

 15

AUTHOR’S QUALIFICATION

During the summer of 2002, I conducted initial research on geometry synthesis

under the supervision of Dr. Warren. In the advent of these studies, I successfully

implemented several texture synthesis techniques. I have also examined different

representations of geometry that make synthesis applicable, notably binary fields and

distance fields. The actual work on geometry synthesis was limited and moderately

successful, but generated interesting leads to investigate. In the time since, I have

followed new developments in texture synthesis and would like to incorporate those in

the study as well.

 Author’s Resume

An abridged version of the author’s resume can be found below:

EDUCATION Rice University, Houston, TX
B.S. in Computer Science expected May 2004. GPA 3.86/4.00

EXPERIENCE National Instruments, Austin, TX
 Software Development Intern, Embedded Systems, May 2003 – August 2003

Modified the LabVIEW Embedded environment to generate multi-threaded C source
code for different operating systems and hardware platforms.

Rice University, Houston, TX

 Software Developer, Programming Languages Technology, August 2002 – May 2003
Developed the programming environment DrC#. Advisor: Dr. Cartwright

Rice University, Houston, TX

 Research Assistant, Computer Graphics, May 2002 – December 2002
Independently researched and implemented texture and geometry synthesis
algorithms in computer graphics; developed applications for a haptic input device.
Advisor: Dr. Warren

Rice University, Houston, TX

 Teaching Assistant, Java and Design Patterns, January 2002 – present
Presented tutorials on Unix, Java, design patterns, and tools; consulted college
students and graded their homework assignments. Advisor: Dr. Nguyen

HONORS Sid Richardson Fellow, Tutor

Tau Beta Pi Engineering Honor Society, Officer
Louis J. Walsh Merit Scholarship in Engineering 2001 – 2004

 Rice University President’s Honor Roll Fall 2000, 2002; Spring 2002, 2003

 16

CONCLUSION

 The proposed work promises to reduce the time necessary to create meaningful 3-

dimensional architecture for industrial design, electronic entertainment, and training by

automating large portions of the creation process. Computer gaming and simulations used

for educational purposes would particularly profit from computer-synthesized geometry.

 Additionally, the study expands our knowledge of the link between geometry and

textures and might allow us to apply useful techniques developed with textures in mind to

geometry as well.

 17

REFERENCES

[1] Rollings, Andrew, and Dave Morris. Game Architecture and Design. Scottsdale:

Coriolis, 2000.

[2] Terragen – Photorealistic Scenery Rendering Software. Home page. 22 Jul 2003.

Planetside Software. 7 Oct 2003 <http://www.planetside.co.uk/terragen/>

[3] WorldBuilder. Home page. 6 Oct 2003. Digital Element, Inc. 7 Oct 2003

<http://www.digi-element.com/wb/wb.htm>

[4] Deguy, Sébastian and Albert Benassi. A Flexible Noise Model for Designing

Maps. VMV 2001 Proceedings.

[5] Deussen, Oliver, et al. Realistic Modeling and Rendering of Plant Ecosystems.

SIGGRAPH ‘98 Proceedings.

[6] Allouche, J.-P., M. Courbage and G. Skordev. Notes on Cellular Automata.

Institut fuer Dynamische Systeme, Universitaet Bremen, Report Nr. 458,
November 2000.

[7] Think Labyrinth: Maze Algorithms. Home page. 21 Sep 2003. Walter D. Pullen.

7 Oct 2003 <http://www.astrolog.org/labyrnth/algrithm.htm>

[8] DungeonMaker. Home page. 2002. Dr. Peter Henningsen. 7 Oct 2003

<http://dungeonmaker.sourceforge.net/>

[9] Wei, Li-Yi. Texture Synthesis by Fixed Neighborhood Searching. Stanford

University, November 2001.

[10] Wei, Li-Yi. Deterministic Analysis and Synthesis using Tree Structure Vector

Quantization. Proceedings of the XII Brazilian Symposium on Computer
Graphics and Image Processing, 1998.

[11] Liang, Lin, et al. Real-Time Texture Synthesis by Patch-Based Sampling. ACM

Transactions on Graphics, Vol. 20, No. 3, July 2001, Pages 127-150.

[12] Lorensen, William E. And Harvey E. Cline. Marching Cubes: A High Resolution

3D Surface Construction Algorithm. ACM Computer Graphics, Vol. 21, No. 4,
July 1987, Pages 163-169.

[13] Warren, Joe, et al. Dual Contouring of Hermite Data. SIGGRAPH 2003

Proceedings.

http://www.planetside.co.uk/terragen/
http://www.digi-element.com/wb/wb.htm
http://www.astrolog.org/labyrnth/algrithm.htm
http://dungeonmaker.sourceforge.net/

