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ABSTRACT OF PROPOSED STUDY 

The creation of meaningful geometry for architecture or simulations currently takes a 

considerable amount of time. Traditional geometry creation usually entails the creation of 

a rough layout of the architecture, the manual addition of geometric detail, and a final 

application of colors and textures to it. 

By automating large portions of this using the parametric generation of large-scale 

geometry and the subsequent addition of detail using techniques borrowed from texture 

synthesis, this process might be accelerated dramatically. 

I propose to study algorithms that allow for such automatic geometry synthesis and to 

create an editing environment that enables the user to automatically generate architecture 

governed by a set of parameters. In a second phase, the environment will then be used to 

synthesize meaningful detail into the still raw architecture. 

The system will display the results 3-dimensionally and let the user export them into 

other programs. 
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INTRODUCTION 

 

The use of computer-generated, 3-dimensional geometry today is ubiquitous. It 

has been used for over a decade in computer-aided design (CAD) of commercial products 

or yet unbuilt architecture, is a major component of current computer games, and has 

been embraced by the movie industry to cheaply replace reality or to build an alternate 

one. Education and training also make increasing use of 3-dimensional graphics. 

 

The creation of meaningful geometry for these architectures or simulations, 

however, currently takes a considerable amount of time. Traditional geometry creation 

usually entails the making of a rough layout of the architecture, the manual addition of 

geometric detail, and a final application of colors and textures to it. In the computer game 

industry, for example, it requires roughly the work of an entire man-year to create the 

content for only 40 hours of game play [1]. 

 

Intelligent algorithms could reduce this figure significantly and open up new 

opportunities. By automating large portions of the traditional procedure described above, 

the designers would have more time to tailor the simulation to their specific needs, for 

example. In computer gaming and training, fast automatic generation of new 

environments would also increase replay value and the effectiveness of the simulation. 

 

Aside from the immediate practical benefits, the successful completion of this 

study would also tie together two research areas that are currently disjoint: that of 

textures and that of geometry. It would prove that synthesis techniques developed with 

textures in mind can be applied to geometry as well. Using this connection to leverage 

texture synthesis techniques would be immensely useful and increase the value of both 

previous and future work these areas. 



 2

PREVIOUS WORK 
 

 Previous work that falls precisely into this area of study, the generation of 

meaningful geometry on an architectural level, is very limited. Most work has been done 

in fields that operate on a different scale, are severely limited, or are not inherently 

related to geometry, but serve as source of techniques that can be applied to geometry 

synthesis. This section will examine work in all three categories. 

 

 

Planetary-Scale Geometry Synthesis 
 

Most work regarding geometry generation has been done on a landscape basis, 

and several software products are available already [2][3]. The algorithms at the cores of 

these programs mostly utilize a noise source, such as Perlin noise [4], to generate a 

matrix called height field. Small numbers in this field correspond to low altitudes, and 

large numbers to high altitudes. The user can then change the terrain by applying filters 

that smoothen, roughen, or erode the ground, changing the sea level, or adding rivers and 

lakes. Using these tools, mountain ranges, lakes, entire continents and planets can be 

generated and photo-realistically rendered, as demonstrated by Terragen in Figure 1. 

 

Some systems even include a simulation of a plant ecosystem [5]. The distribution of the 

different plant species is determined by cellular automata, as found in the game of life [6], 

Figure 1: Terragen Landscape Figure 2: Plant Ecosystem 
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for example. Certain plant species can only survive in well-irrigated areas, while others 

are more resistant to draughts. Plant seeds of one kind may spread more easily than those 

of another. All these parameters determine the survival and breeding patterns and 

ultimately the placement of plants. Again, the results are excellent, require very little 

human interaction, and nearly photo-realistic (see Figure 2). 

 

 It is obvious, though, that these methods of generating geometry function on a 

completely different scale than the ones I am proposing. These algorithms create entire 

continents and planets; they simulate the constructive forces of nature, not those of man. 

Even though human settlements could possibly be simulated using an ecosystem similar 

to the one used for plants, this would again happen on a planetary scale. It cannot be 

applied to only a single building. Architecture, that is construction with a coherent form 

as a result of a conscious act, seems inherently different from the way nature is shaping a 

planet; it therefore cannot be simulated using the same means. 

 

 It should be possible, though, to combine the two approaches and use noise- and 

filter-based geometry synthesis on a large scale to create a natural environment. The 

graph- and analogy-based algorithms I propose then fill this habitat with structures. This, 

however, is a subject that will require further investigation. 
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Maze Generation 
 

There are some algorithms for creating smaller structures [7]. One of them, 

recursive backtracking, involves randomly removing walls from a grid and moving into 

that direction if that cell has not been previously reached. Once a dead end is 

encountered, that is a cell where no wall can be torn down since all of the surrounding 

cells have already been stepped into, the algorithm backtracks to the closest cell where a 

wall can be removed. Applying this procedure until the entire grid has been processed 

results in a Mephistophelean maze, depicted in Figure 3. Since every place in the maze 

can be reached in one and only one way, these kinds of mazes are also called perfect 

mazes. 

 

While Mephistophelean mazes have nice properties, most of the time they do not reflect 

human architecture. They are too repetitive, restrictive, and use space in an awkward 

way.  Additional shortcomings are that they can only be created on some kind of regular 

grid, and that they are mostly 2-dimensional in nature. 

 

The DungeonMaker program employs a different stragety [8]. The user specifies 

starting locations for agents called tunnelers, which excavate corridors and change 

Figure 3: Mephistophelean Maze Figure 4: DungeonMaker Maze 
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direction according to a probability table. At random places, tunnelers can spawn new 

agents that branch off in different directions, or create rooms that are sectioned off from 

the corridor by doors. Before generation, the user can also manually place corridors, 

walls, and doors. 

 

 If care is taken, the resulting maze still exhibits connectedness, but allows loops, 

wider tunnels, and generally more interesting shapes. Mazes generated by an algorithm 

like the one described above look more realistic. They contain corridors, halls, and rooms 

that might serve some purpose, as shown in Figure 4. 

 

 Currently, the algorithm still operates on a 2-dimensional grid, sharing some of 

the disadvantages of Mephistophelean mazes. I am certain, though, that the procedure can 

be modified to make free use of space in 3-dimensions. 

 

 

 Texture Synthesis 
 

 Much more research has been done in an area not directly related to geometry 

synthesis. In texture synthesis, new textures or images are formed from one or more 

samples given to the algorithm. The image should then be similar to but not exactly the 

same as the originals. 

  

 Li-Yi Wei described an algorithm that is often used in texture synthesis in his 

doctoral thesis [9]. It requires a source texture and a template texture as inputs and 

generates a synthesized texture of arbitrary size that resembles the source texture (see 

Figure 5). In most cases of regular texture synthesis, the template texture just contains 

random noise, even though other possibilities exist, as I will explain later. 

 

 The procedure cycles through every pixel of the template texture and looks at its 

neighborhood, the set of pixels that surrounds it. It then compares the neighborhood in 

the template texture to all possible neighborhoods in the source, and selects the one that is 
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the least different. Usually, an L2 norm is used, which compares the sum of the squares of 

the differences; since the differences are squared, large aberrations are punished more 

harshly than small ones, resulting in closer matches. Once the closest neighborhood in the 

source texture has been found, the pixel in the center of that neighborhood is copied into 

the current pixel in the template, and the algorithm continues with the next pixel. 

 

 Neighborhoods can vary in size and shape. Larger neighborhoods are able to 

reproduce larger features in the source texture. The neighborhood size should be 

proportional to the size of the features in the source, and the proportionality constant is 

called the randomness parameter. Small values lead to textures that hardly resemble the 

source, while values close to 1 or larger recreate the source almost perfectly. 

 

 If the template contains random noise, the neighborhood also needs to be causal, 

that means it should only take those areas of the texture into consideration that have 

already been synthesized. Since the areas above and to the left of the current pixel have 

already been processed, a causal neighborhood generally has the shape of an “L” rotated 

90 degrees clockwise. The requirement for causality therefore determines the shape of the 

neighborhood. 

 

 The template, however, does not have to contain noise. It might start off with 

meaningful information or be composed of both that and noise. In this case, the algorithm 

will attempt a constrained texture synthesis. It is constrained since the synthesized pixels 

Figure 5: Texture Synthesis (left: source texture; middle: noise; right: synthesized texture) 
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must perfectly blend in with the ones already present, some of which can be to the right 

or below the current pixel. Therefore, a symmetric neighborhood is necessary. If the 

image contains noise, a two-pass algorithm maintains causality: The first pass uses an L-

shaped neighborhood; a second pass with a symmetric neighborhood satisfies the 

boundary requirements. Constrained synthesis can be used to restore missing pieces in a 

texture, to erase certain areas, or to expand it and make it larger. 

 

 As stated above, larger neighborhoods are necessary for the reproduction of large 

features. Unfortunately, running time increases dramatically with the size of the 

neighborhood. The algorithm depends on the size of the template texture t; the size of the 

source texture s; and the size of the neighborhood n. Since it compares every 

neighborhood in the template with every possible neighborhood in the source, and every 

pixel in a neighborhood with its corresponding pixel in the source neighborhood, a naïve 

implementation is O(t2s2n2): Doubling the size of the neighborhood quadruples the 

running time. 

 

 Several optimizations have been proposed to reduce running time. In his thesis, 

Wei already proposed a multi-resolution algorithm that uses a pyramid scheme to recreate 

large features while using smaller neighborhoods. Both the source and the template 

texture are scaled down, and synthesis begins at a much lower resolution. Since the size 

of the largest feature is also decreased, a smaller neighborhood is now able to capture it. 

The results of the low-resolution synthesis are then scaled up again, and the algorithm 

continues at the higher resolution with the rescaled results as template. 

 

Together with Marc Levoy, Wei also described how to accelerate texture 

synthesis by using tree-structured vector quantization (TSVQ), a common technique for 

data compression [10]. Instead of doing a linear search through all possible 

neighborhoods, a tree of neighborhoods is constructed before synthesis begins. Search 

time can therefore be reduced from O(n) to O(log n), where n is the number of 

neighborhoods that are compared. 
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Lin Liang et al noted that most of the time, large contiguous patches are 

transferred from the source texture into the template [11]. Best-match comparisons only 

need to be made at a patch’s border where it blends into other patches. In patch-bases 

texture synthesis, the source is broken down into patches that are pasted into the template 

in their entirety. When a new patch is selected, only the borders are compared. This 

dramatically decreases the running time. 

 

While texture synthesis does not directly relate to the task at hand, it is possible to 

change the representation of closed polygonal geometry so that the techniques described 

above can be used. The space the geometry is in is divided into a uniform grid and the 

distance to the closest polygon is calculated; the distance is positive or negative 

depending on whether the cell is inside or outside the geometry. The result is a matrix of 

numbers, not very different from the one used to represent a texture. The synthesized 

matrix can then be transformed back to polygonal geometry using Marching Cubes [12] 

or Dual Contouring [13].  

 

During the summer of 2002, I have already demonstrated that texture synthesis 

techniques can be used to generate new geometry. Figure 6 shows hand-created geometry 

on the left and the result of geometry synthesis on the right. 

 

 Unfortunately, my studies showed that the algorithms are bad at creating large-

scale structures. This was somewhat expected, though, since texture synthesis techniques 

require the image to be stationary and local, as explained in Wei’s thesis; their 

application to large-scale geometry thus fails for the same reasons it fails in producing 

pictures as opposed to just textures. Attempts to use synthesis by analogy to modify 

surface properties yielded some encouraging results, though, as Figure 7 depicts. I would 

like to further pursue this direction. 
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PROPOSED WORK 
 

 I propose to build an editing system to synthesize 3-dimensional architectural 

geometry. The system will consist of two editing stages and allow user interaction or 

automatic generation at any time. The program will have a graphical user interface (GUI) 

and show the results of the synthesis in a 3-dimensional display. 

 

 The first stage will construct large-scale architecture using a parametric algorithm 

similar to the one DungeonMaker uses. I will have to generalize it to work with 3-

dimensional, not grid-based spaces. This process also involves defining precise 

Figure 6: Geometry synthesis by analogy (left: source; right: synthesized) 

Figure 7: Surface properties modified by synthesis (left: source; right: synthesized) 
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parameters to control the generation of geometry, such as the frequency that a path 

branches, the possible angles for those branches, the thickness of the walls, alignment 

options to create grid-like layouts and floors, the sizes of corridors and rooms and their 

shapes. I expect good results from this algorithm, even though I believe it will be hard to 

find the parameters that will lead to architecture as we know it today. The synthesized 

geometry should still be interesting, diverse, and suitable for use in a computer game, for 

example. Creating architecture that actually resembles today’s buildings will need further 

investigation, as architecture is always connected to a purpose, which is beyond the 

understanding of the program. 

 

 Should the proposed algorithm unexpectedly not perform well in our modified 

environment, I will implement an alternative algorithm that has two stages itself. The first 

stage places points according to some of the parameters mentioned above. Depending on 

how close the points are, some of them will then be connected to form a graph. In the 

second phase, the algorithm then picks suitable geometric objects to transform the points 

into rooms and the connections into corridors. My provisional investigations suggest that 

this procedure will work as well; however, the algorithm described above has been 

proven to yield good results on a 2-dimensional grid and therefore seems more 

promising. I also I will be able to implement it more quickly than the untested algorithm, 

giving me more time to focus on geometry synthesis by analogy. 

 

 Once the raw geometry has been created, algorithms borrowed from texture 

synthesis will be used to automatically add detail to the architecture. The user will be able 

to select an area of the geometry and different detail sources, and the program will apply 

those details to it. The changes made can be both geometric and textural in nature: They 

might change the geometry to match that given in the sources or automatically add 

seamlessly tiling textures to it. 
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 Geometric changes to the architecture might, for example, involve adding a brick 

pattern with actual seams to a wall; installing windows in an outside wall that match the 

height and style of the wall; adding steps and a railing to convert a ramp to a staircase; 

and possibly augmenting a room by including furniture, plants and other objects. Figure 8 

provides an illustration of how the algorithm might add windows to a wall. The textural 

modifications will be more traditional and follow the classic ideas of texture synthesis to 

automatically paint the geometry in a coherent fashion. 

 

 To implement geometry synthesis by analogy, I will have to generalize the 

synthesis algorithms I have worked with in 2002 to work with 3-dimensional geometry. 

Transitioning from 2-dimensions to 3-dimensions will degrade runtimes even further and 

demand that I implement some of the optimizations that the works in texture synthesis 

describe. I expect particularly good results from using patch-based synthesis. Since I have 

not worked with these particular optimizations, I cannot make any statements about the 

time the editing system will require to synthesize a level; my intuition, however, tells me 

it to be in the range of several hours. The time to generate the raw geometry will be much 

shorter and the program will need no user interaction while it is synthesizing, so using 

this system will still be beneficial to designers. 

 

 There is no alternative plan if geometry synthesis by analogy fails to provide good 

results. While I will still be able to demonstrate the generation of raw geometry and the 

automatic texturing of the architecture without it, my main interest is to prove that 

algorithms for texture synthesis can be used on geometry as well. Due to the successful 

   
Figure 8: Geometry Synthesis by Analogy (left: raw geometry; middle: source; right: synthesized) 
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demonstration of geometry synthesis in two dimensions on a small scale and the 

promising results in changing surface properties, though, I am certain the algorithms can 

be successfully leveraged. 

 

 Several approaches exist to improving the synthesis result, though. In my 

previous studies, I noticed that the application of several passes over the same area 

generally produces results that match the source geometry better. This can be measured 

by analyzing the energy of the result, the sum of the differences between the 

environments in the template and the best matches found in the sources. A good synthesis 

result will have a low energy and thus conform more closely to the source geometry. The 

algorithm could be modified to run several passes in areas where the energy remains 

above some threshold value. 

 

 Another possibility is to encourage the selection of pixels from adjacent 

neighborhoods. If the last pixel was generated from one source neighborhood, the 

neighborhoods surrounding it could be given a higher probability of being picked. This 

technique leads to larger patches selected from the same source region and therefore to 

synthesized geometry that is more contiguous. 

 

 The final results of the synthesis process can either be viewed in the editing 

system or exported into other programs. This will make it possible to use the geometry in 

other programs and possibly make further modifications. 

 
 

Budget 

 

For the completion of this project, I request funds for the items below. I would 

also demonstrate my results at the SIGGRAPH 2004 conference held from August 8-12, 

2004 in Los Angeles and thus request funding for travel and registration expenses. 

 

Unfortunately, my work will not have progressed far enough to allow me to 

submit a paper; however, submission of a poster and participation in the ACM Student 



 13

Research Competition is possible. Being able to showcase my research at SIGGRAPH 

and to explain its implications personally would be of great value. Registration in 

advance is possible. 

 
Software   
 IntelliJ IDEA Editing Environment for Java, Academic 

Version 
$100 

Sources   
 Copying and printing; access fees to papers; books (to be 

donated to Fondren Library) 
$150 

SIGGRAPH   
 Conference registration $425 
 Travel $700 
 Lodging (4 nights) $300 
Total  $1675 

 
 
Timeline 

 
The anticipated timeline for this project is as follows: 
 

December 2003 

 Large-scale geometry generation 

February 2004 

 Proof of concept for geometry synthesis by analogies 

April 2004 

 Optimizations for geometry synthesis and thesis 

May 2004 

 Submission of poster to SIGGRAPH 2004 

August 2004 

 Presentation of work at SIGGRAPH 2004 
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FUTURE WORK 
 

 This project leaves many directions open for further investigation. If the 

parametric creation of large-scale geometry is to generate architecture as we see it every 

day, the algorithms and parameters used here will certainly need additional research. A 

cooperation with researchers from the fields of architecture and sociology might prove to 

be fruitful here. 

 

 Another option is to improve the algorithms used in the synthesis by analogy part. 

As mentioned before, optimizations are even more critical in 3-dimensional space than 

they are in the two dimensions texture synthesis operates in. It should therefore be useful 

to study all the optimizations that have been found to work for texture synthesis and to 

apply them to geometry. 

 

It is also possible that geometry makes it possible to employ special optimizations 

unsuitable for textures. The search for those would certainly be worthwhile. One area that 

could provide insight is that dealing with compression of geometric data. To reduce the 

amount of information, geometry is often represented as an octree, a data structure that 

divides space into eight quadrants. If one of those quadrants is completely filled with the 

same material, it does not have to be broken down to the finest resolution but can instead 

be represented as a larger block. Using an octree representation for geometry synthesis 

might reduce the number of comparisons necessary to find the best-matching 

neighborhood and thus result in improved runtimes. 
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AUTHOR’S QUALIFICATION 

 

During the summer of 2002, I conducted initial research on geometry synthesis 

under the supervision of Dr. Warren. In the advent of these studies, I successfully 

implemented several texture synthesis techniques. I have also examined different 

representations of geometry that make synthesis applicable, notably binary fields and 

distance fields. The actual work on geometry synthesis was limited and moderately 

successful, but generated interesting leads to investigate. In the time since, I have 

followed new developments in texture synthesis and would like to incorporate those in 

the study as well. 
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CONCLUSION 

 

 The proposed work promises to reduce the time necessary to create meaningful 3-

dimensional architecture for industrial design, electronic entertainment, and training by 

automating large portions of the creation process. Computer gaming and simulations used 

for educational purposes would particularly profit from computer-synthesized geometry. 

 

 Additionally, the study expands our knowledge of the link between geometry and 

textures and might allow us to apply useful techniques developed with textures in mind to 

geometry as well. 



 17

REFERENCES 
 
[1] Rollings, Andrew, and Dave Morris. Game Architecture and Design. Scottsdale: 

Coriolis, 2000. 
 
[2] Terragen – Photorealistic Scenery Rendering Software. Home page. 22 Jul 2003. 

Planetside Software. 7 Oct 2003 <http://www.planetside.co.uk/terragen/> 
 
[3] WorldBuilder. Home page. 6 Oct 2003. Digital Element, Inc. 7 Oct 2003 

<http://www.digi-element.com/wb/wb.htm> 
 
[4] Deguy, Sébastian and Albert Benassi. A Flexible Noise Model for Designing 

Maps. VMV 2001 Proceedings. 
 
[5] Deussen, Oliver, et al. Realistic Modeling and Rendering of Plant Ecosystems. 

SIGGRAPH ‘98 Proceedings. 
 
[6] Allouche, J.-P., M. Courbage and G. Skordev. Notes on Cellular Automata. 

Institut fuer Dynamische Systeme, Universitaet Bremen, Report Nr. 458, 
November 2000. 

 
[7] Think Labyrinth: Maze Algorithms. Home page. 21 Sep 2003. Walter D. Pullen. 

7 Oct 2003 <http://www.astrolog.org/labyrnth/algrithm.htm> 
 
[8] DungeonMaker. Home page. 2002. Dr. Peter Henningsen. 7 Oct 2003 

<http://dungeonmaker.sourceforge.net/> 
 
[9] Wei, Li-Yi. Texture Synthesis by Fixed Neighborhood Searching. Stanford 

University, November 2001. 
 
[10] Wei, Li-Yi. Deterministic Analysis and Synthesis using Tree Structure Vector 

Quantization. Proceedings of the XII Brazilian Symposium on Computer 
Graphics and Image Processing, 1998. 

 
[11] Liang, Lin, et al. Real-Time Texture Synthesis by Patch-Based Sampling. ACM 

Transactions on Graphics, Vol. 20, No. 3, July 2001, Pages 127-150. 
 
[12] Lorensen, William E. And Harvey E. Cline. Marching Cubes: A High Resolution 

3D Surface Construction Algorithm. ACM Computer Graphics, Vol. 21, No. 4, 
July 1987, Pages 163-169. 

 
[13] Warren, Joe, et al. Dual Contouring of Hermite Data. SIGGRAPH 2003 

Proceedings. 

http://www.planetside.co.uk/terragen/
http://www.digi-element.com/wb/wb.htm
http://www.astrolog.org/labyrnth/algrithm.htm
http://dungeonmaker.sourceforge.net/

